
Flip MCMC Redistricting Simulator using Simulated Annealing
Source:R/redist_flip.R
redist_flip_anneal.Rd
redist_flip_anneal
simulates congressional redistricting plans
using Markov chain Monte Carlo methods coupled with simulated annealing.
Usage
redist_flip_anneal(
map,
nsims,
warmup = 0,
init_plan = NULL,
constraints = redist_constr(),
num_hot_steps = 40000,
num_annealing_steps = 60000,
num_cold_steps = 20000,
eprob = 0.05,
lambda = 0,
adapt_lambda = FALSE,
adapt_eprob = FALSE,
exact_mh = FALSE,
maxiterrsg = 5000,
verbose = TRUE
)
Arguments
- map
A
redist_map
object.- nsims
The number of samples to draw, not including warmup.
- warmup
The number of warmup samples to discard.
- init_plan
A vector containing the congressional district labels of each geographic unit. The default is
NULL
. If not provided, a random initial plan will be generated usingredist_smc
. You can also request to initialize usingredist.rsg
by supplying 'rsg', though this is not recommended behavior.- constraints
A
redist_constr
object.- num_hot_steps
The number of steps to run the simulator at beta = 0. Default is 40000.
- num_annealing_steps
The number of steps to run the simulator with linearly changing beta schedule. Default is 60000
- num_cold_steps
The number of steps to run the simulator at beta = 1. Default is 20000.
- eprob
The probability of keeping an edge connected. The default is
0.05
.- lambda
The parameter determining the number of swaps to attempt each iteration of the algorithm. The number of swaps each iteration is equal to Pois(
lambda
) + 1. The default is0
.- adapt_lambda
Whether to adaptively tune the lambda parameter so that the Metropolis-Hastings acceptance probability falls between 20% and 40%. Default is FALSE.
- adapt_eprob
Whether to adaptively tune the edgecut probability parameter so that the Metropolis-Hastings acceptance probability falls between 20% and 40%. Default is FALSE.
- exact_mh
Whether to use the approximate (0) or exact (1) Metropolis-Hastings ratio calculation for accept-reject rule. Default is FALSE.
- maxiterrsg
Maximum number of iterations for random seed-and-grow algorithm to generate starting values. Default is 5000.
- verbose
Whether to print initialization statement. Default is
TRUE
.